

Learning Objectives

Cover Multiple Scenarios Such as Power Generation, Transmission, and Consumption, Improve Wind and PV Power Integration, Stabilize Power Grid Operation, and Reduce Power Consumption Costs

- Generation: Replace the conventional genset power supply with the joint operation of PV+Wind+ESS. Promote PV+Wind+ESS to optimize the PPA electricity prices of PV+wind.
- **G** Grid: Leverage ESSs in power grid services to ensure the stability and balance of power grid operations.

Consumption: Promote PV+ESS to improve self-consumption, facilitate time-of-use (ToU) arbitrage, and delay power distribution network revamping to reduce power consumption costs.

Smart String ESS: Controllability of power electronics to resolve inconsistencies in a second construction of power electronics to resolve inconsistencies of the second construction o

115 MW/146 MWh BESS in Singapore

WHUAWEI

*RTE, round trip efficiency

Increased Renewable Energy Penetration Rate equals to Weakened Grid Strength (SCR)

Short circuit ratio (SCR)

SCR is the ratio of the short-circuit capacity at the grid connection point to the rated capacity of a power plant. It measures the impact of power injection on the voltage quality and stability of local grids, and reflects the grid strength. A higher SCR indicates a stronger grid and grid connection ability.

GRID FOLLOWING	GRID FORMING	
Current source	Voltage Source	
The power grid can be supported by adjusting the output power. However, the support response speed is limited,	Independent operation without relying on other powe generation units	
Depends on PLL synchronization.	Core controls voltage amplitude and frequency/phase	
Can't go near at 100% new energy port penetration rate	Only the PLL auxiliary device may be required for mode switching.	
Depending on the generated voltage reference signal generated by other power generation units to achieve operation	Can be near at 100% new energy port penetration rat	
The system strength cannot be improved, and the inertia and anti-interference capability (such as phase angle jump) are lacking.	Transient response of output power, supporting voltage and frequency	

Renewable industry is booming, while multiple challenges still remain

More wind + solar brings down inertia in 2030

In 2023, hour numbers for solar+wind share of demand exceed 60%

In 12 countries	Country	60%+ Hours	Power (GW)
	Denmark	4402	19.8
exceeded 60%	Spain	2369	128.7
for more than 100	Germany	2166	242.2
hours per year in	Greece	1715	24.1
2023	Netherlands	1070	56. 1
Selfer	Portugal	916	22.3
	Lithuania	580	5.3
	Estonia	478	3.1
	Belgium	423	30.1
	Sweden	363	50.6
	Hungary	213	12.8
🝊 – 🏹 🚺 🔁 – – – – – – – – – – – – – – – – – –	Poland	107	63.3
	Italy	49	121.1
	Austria	49	27.5
	Bulgaria	33	14.7
	Romania	8.5	17.6
	Luxenberg	7	0.7
	Croatia		5.2
	Finland		23.1

Saudi Arabia Red Sea Project

World's Largest 100% PV + ESS Microgrid Project

400 MW PV + 1.3 GWh BESS

Serving 100% PV + ESS power supply for 1 million people in Red Sea new city Grid Forming enabling 100% PV & ESS grid

COD: 16MWh ready around Dec. 2022, others shall be ready around middle of 2023

22, PV plant in Gonghe, Qinghai

World's first 180 tests of the smart grid-forming solution in a strong grid

Quick active power adjustment response – Startup time < 5 ms Transient voltage control speed – Reactive power response < 10 ms

Short-circuit capacity – **Three-fold overcurrent protection capability**

In 2022, Huawei teamed up with the China Electric Power Research Institute, State Grid Qinghai Electric Power Company, and **CR Power** to test and verify the smart grid-forming solution in the world's first gridconnection performance test.

23, BESS plant in Golmud, Qinghai

510 successful tests of the smart gridforming solution in weak grid

510 Grid-connected tests from SCR 40.0 to SCR 1.0

to verify how to stabilize the grid in various cases under week grid, such as frequency control, grid steady-state response, transient response, phase-angle jump event, etc.

300% reactive short-circuit current contribution

In 2023, Huawei teamed up with the China Electric Power Research Institute, State Grid Qinghai Electric Power Company, and **China Energy Group** to test and verify the smart grid-forming solution in the world's first grid-connection performance test.

In the Past 10+ Years, Huawei Continuously Invest Heavily in Power Grid Stability Technologies

Key inputs to be considered in RTE

- Ambient temperature
- C-rate
- Power output required (POI limitation)
- Auxiliary services included?

De-rating Curve VS. Ambient Temperature

De-rating Curve VS. Ambient Temperature of LUNA2000-213KTL-H0

200 150

• **Capacity utilization ratio:** When 0.25 < C-rate ≤0.5, this value is 0.98; when C-rate ≤0.25, this value is 0.99.

Performance Curve VS. Load Factor of 9MW ecodesign transfomer @40°C

	25 °C		35 ℃	
Item	0.5C Efficiency	0.25C Efficiency	0.5C Efficiency	0.25C Efficiency
Charge Efficiency	93.51%	94.52%	93.15%	94.11%
Discharge Efficiency	94.39%	94.65%	94.03%	94.24%

caoyu 00675544 50 choyu (

PF=+-1, Grid Voltage: 800Vac, Bus Voltage: 1331Vdc

System		25°C		
Charge	Item	0.5C Efficiency	0.25C Efficiency	
only, The actual configuration prevails.) STS Efficiency (For reference only, The actual configuration prevails.) LV AC cable Efficiency (For reference only, The actual configuration prevails.) PCS discharge Efficiency (fully loaded)	Charge Efficiency	93.51%	94.52%	
	BESS Aux. Efficiency	99.43%	99.19%	
	2	99.80%	99.80%	
	only, The actual configuration	99.15%	99.15%	
	reference only, The actual	99.90%	99.90%	
	0 1	98.45%	98.45%	
	2	99.83%	99.90%	
	Rack Efficiency	99.82%	99.91%	
	Pack Efficiency	96.97%	98.10%	

25°C

0.25C Efficiency

94.65%

99.19%

99.80%

99.15%

99.90%

98.55%

99.90%

99.91%

98.14%

0.5C Efficiency

94.39%

99.43%

99.80%

99.15%

99.90%

98.55%

99.83%

99.81%

97.80%

Item

prevails.)

prevails.)

loaded)

prevails.)

Rack Efficiency

Pack Efficiency

Discharge Efficiency

BESS Aux. Efficiency

STS-POC Efficiency (For reference

only, The actual configuration

STS Efficiency (For reference

only, The actual configuration

LV AC cable Efficiency (For

DC cable Efficiency (For reference

only, The actual configuration

reference only, The actual

configuration prevails.) PCS discharge Efficiency (fully

2. Recharging batteries please according to the recharging guide. Otherwise, batteries may be overdischarged.

Storage Temperature Requirement	Storage Temperature	Recharge Period	Remark
0°C~40°C	0°C≤T≤30°C	12 months	During the recharge period, no process is required and the battery is consumed as soon as possible.
0 C~40 C	30°C≤T≤40°C	8 months	Recharge the battery when the recharge time is reached. Stop charging when the battery SOC reaches 50%

Huawei considers 19 factors to simulate the attenuation curve

Fitting Model Two Main Factors		Industry	Huawei	Impact
		3 to 5 factors	19 factors	more factors considered, more accurate result
		Cell cycle: 300-500 cycles	Cell cycle: 1250 cycles	More the number of times, the
	Cell Degradatior	n Test conditions/Quantity: 1 working condition	Test conditions/quantity: 2 to 3 working conditions, 3 PCS for each type	more the working conditions, the more accurate.
Cyclic degradation	Pack	Temperature rise: The temperature rise of the cell in the pack is not considered.	Temperature rise: The temperature rise of the cell in the pack must be considered.	Temperature is one of the top factors.
	Degradation	Consistency: Generally, consistency differences are not considered and there is no design to prevent.	Consistency: Package Optimization and rack management avoid differences	Consistency is one of the top factors.
Storage degradation		Cell storage: degradation is not usually considered	Cell storage: test for 6 months + fitting, with degradation considered	Storage degradation accounts for about 33% of the lifetime degradation.

SOH Guarantee

G	eneral Ov	verview	ı of DC C	oupling 8	& AC Coup	ling				
		Capex	Efficiency	Affect PV	Safety	Grid Forming	Ancillary service	Availability	ΟΡΕΧ	
	DC Coupling	***	***	Y	**	***	*	* *	High	
	MV AC Coupling	**	**	Ν	***	***	***	***	Low	
	LV AC Coupling	***	***	Ν	***	***	***	***	Low	
	45 Huawei (Confidential							👋 HUA	WEI

			0.5C 1cycle/day D0D100% 25°C			
Year	Pack RTE @ Container output without Auxiliary consumption	RTE @ PCS output without Auxiliary consumption	RTE @ POC output without Auxiliary consumption	RTE @ PCS output with Auxiliary consumption	RTE @ POC output with Auxiliary consumption	
0	94.48%	91.49%	89.41%	90.31%	88.25%	
1	94.30%	91.32%	89.24%	90.14%	88.08%	
2	94.10%	91.13%	89.05%	89.95%	87.89%	
3	93.95%	90.98%	88.91%	89.80%	0.50	
4	93.80%	90.84%	88.76%	89.66%	0.5C 1cycle/day D0D100	
5	93.70%	90.74%	88.67%	89.56%	25°C	
6	93.60%	90.64%	88.57%	89.47%		0.25C 1cycle/day D0D100%
7	93.50%	90.55%	88.48%	89.37%	<u>35°C</u>	C 10ycle/day D0D100%
8	93.40%	90.45%	88.39%	89.28%	40°C	<u> </u>
9	93.30%	90.35%	88.29%	89.18%	45°C	35°C
10	93.20%	90.25%	88.20%	89.09%	87.05%	40°C
11	93.10%	90.16%	88.10%	88.99%	0.5C 1.5cycle/day D0D100%	45°C
12	92.95%	90.01%	87.96%	88.85%	Liscycle/day D0D100%	45 0
13 14	92.80% 92.60%	89.87% 89.67%	87.82% 87.63%	88.70% 88.51%	25°C	0.250
14	92.60%	89.48%	87.44%	88.32%	35°C	0.25C 1.5cycle/day D0ptos
16	92.40%	89.29%	87.25%	88.13%	40°C	0.25C 1.5cycle/day D0D100% 25°C
17	92.00%	89.09%	87.06%	87.94%	45°C	
18	91.80%	88.90%	86.87%	87.75%	45 C 85.75%	<u>35°C</u>
19	91.60%	88.71%	86.68%	87.56%		40°C
20	91.30%	88.41%	86.40%	87.27%	0.5C 2cycle/day D0D100%	45°C
					25°C	
						0.25C 1cycle/day D0D100%
					35°C	ODD100%
					40°C	- 250
					45°C	35°C
						40°C
						45°C

Key specifications of Lithium-ion battery status

SOH

- The State of Health (SOH) indicates the ability of the current battery to store energy relative to the new battery. Currently, the SOH is not defined in a unified manner. The most common SOH is the percentage of the current available battery capacity to the nominal battery capacity.
- Accurately measuring the SOH of lithium batteries helps you know the battery health status in time.
- The ambient temperature, charge/discharge ratio and depth of charge/discharge are the main factors affecting SOH. When the battery temperature is too high or too low, the charge/discharge ratio is too large, and the charge/discharge ratio is too high, the SOH of lithium battery will be rapidly SOC reduced.
- The State of Charge (SOC) indicates the current energy storage state of the battery, that is, the percentage of the remaining battery capacity to the total available battery capacity.
- SOC is the most important parameter of lithium-ion battery management. It not only reflects the remaining power of the battery, but also the estimation input of other parameters of the battery status, but also the important criterion of BMS (battery management system) control strategy.
- The SOC of lithium batteries cannot be measured directly. It can only be estimated by using the estimation model, such as battery cell voltage, charging and discharging current, temperature, and internal resistance.
- 50 Huawei Confidential

S	OH Gu	arantee		-		
	Cat	tegory	warranty model	Data volume/time limit requirements	Note 1	Note 2
1 2 3 4		Storage Degradation Data	SOH storage degradation data in 100% SOC at 25°C. SOH storage degradation data in 100% SOC at 45°C. SOH storage degradation data in 50% SOC at 25°C. SOH storage degradation data in 50% SOC at 45°C	 ≥ 6 months data (at least 6 data records) ≥ 6 months data (at least 6 data records) ≥ 6 months data (at least 6 data records) ≥ 6 months data (at least 6 data records) 	Provide data + fit curve Provide data + fit curve Provide data + fit curve Provide data + fit curve	Data storage volume ≥ 6 months, at least two temperature points (temperature difference ≥ 10°C)
4 5 6 7 8 9	Cell data	Cycle data	SOH cycle degradation data at 25°C (1/2 max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveCycle dataSOH cycle degradation data at 35°C (1/2 max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 45°C (1/2 max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 45°C (1/2 max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 25°C (max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 35°C (max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 45°C (max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curveSOH cycle degradation data at 45°C (max rate) $\geq 1/8$ cycle specification + 50 turnsProvide data + fit curve		Provide data + fit curve Provide data + fit curve Provide data + fit curve Provide data + fit curve	The number of cycles is greater than or equal to 1/8 + 50, and at least three temperature points (temperature difference is greater than or equal to 5°C). The maximum rate and 1/2 maximum rate data are required.
11 12		Consistency	Consistency of cells in the same container, including capacity and internal resistance Temperature difference consistency of the PACK in different positions	Data of each electrochemical cell during shipment. Cell \rightarrow pack \rightarrow container corresponds to each other.		By apply pack optimization & Rack management can avoided this degradation. Competitors do not consider this function
13	Pack data	Temperature rise	Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.5CP charge and discharge Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.33CP charge and discharge			Some competitors do not consider this part.
14			Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.25CP charge and discharge			
15			Operating ambient temperature		Calculated by Huawei based on the average dimension and temperature rise.	
10	Operating	Working condition	Daily cycle times		Calculated by Huawei based on the customer's working conditions	
16	condition data	data (provided by the customer)	Charge/discharge ratio		Huawei calculated based on the customer's working conditions	
17			Storage SOC		Huawei uses 50% SOC storage.	
18 19			DOD		Huawei calculates the DOD based on 100%.	
	52 Huaw	vei Confidential				 W HUAWEI

	(0.25CP Cor	stant power charg	ge/discharge)	(0.33CP Cor	istant power charg	je/discharge)	(0.5CP Con:	stant power charg	e/discharge)
SOC	50%	50%	50%	50%	50%	50%	50%	50%	50%
DOD	1	1	1	1	1	1	1	1	1
°C (Ambient temperature)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)	(below 40°C)
(Number of cycles/day)	1	1.5	2	1	1.5	2	1	1.5	2
(Interval between charge & discharge/hour)	2	2	2	2	2	2	3	3	3
(Number of cycles/year)	365	548	730	365	548	730	365	548	730
/ear	SOH	SOH	SOH	SOH	SOH	SOH	SOH	SOH	SOH
0	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
1	94.89%	94.34%	93.90%	94.69%	94.07%	93.55%	94.27%	93.52%	92.89%
2	92.71%	91.83%	91.01%	92.45%	91.50%	90.60%	91.86%	90.74%	89.68%
3	90.96%	89.68%	88.47%	90.68%	89.31%	88.00%	89.97%	88.39%	86.85%
4	89.38%	87.70%	86.11%	89.09%	87.31%	85.58%	88.28%	86.22%	84.21%
5	87.91%	85.84%	83.86%	87.61%	85.41%	83.28%	86.69%	84.16%	81.69%
6	86.52%	84.05%	81.71%	86.19%	83.59%	81.07%	85.17%	82.17%	79.25%
7	85.18%	82.33%	79.62%	84.84%	81.83%	78.92%	83.71%	80.25%	76.87%
8	83.88%	80.66%	77.58%	83.52%	80.12%	76.82%	82.29%	78.38%	74.55%
9	82.63%	79.03%	75.59%	82.25%	78.45%	74.77%	80.92%	76.54%	72.28%
10	81.40%	77.43%	73.64%	81.01%	76.81%	72.76%	79.57%	74.75%	70.04%
11	80.21%	75.87%	71.72%	79.79%	75.21%	70.78%	78.24%	72.98%	67.83%
12	79.03%	74.33%	69.83%	78.60%	73.63%	68.82%	76.95%	71.23%	65.66%
13	77.88%	72.82%	67.97%	77.42%	72.07%	66.90%	75.67%	69.51%	63.51%
14	76.75%	71.33%	66.14%	76.27%	70.54%	65.00%	74.41%	67.82%	61.38%
15	75.64%	69.86%	64.32%	75.13%	69.03%	63.12%	73.16%	66.13%	
16	74.54%	68.40%	62.53%	74.01%	67.53%	61.26%	71.93%	64.47%	
17	73.45%	66.97%	60.75%	72.90%	66.05%		70.72%	62.82%	
18	72.38%	65.54%		71.80%	64.58%		69.52%	61.19%	
19	71.32%	64.14%		70.72%	63.13%		68.33%		
20	70.28%	62.74%		69.65%	61.68%		67.14%		

SOH degradation scenarios cases

BOL, EOL & AOL

- BOL = Beginning of Life
- EOL = End of Life
- AOL = Augmentation of Life

Example 2: AOL 48MWh

Requirements validation procedures:

Tipo de Ensayo	U _{res} (p.u.)	T _f (ms)	Tipo de falta	Carga	Q/P _{max}	к
UOTPmax			-	Plena	0 ± 10%	K=3,5
UOTP _{med}	00/11- (-50/)		Trifásico	Parcial	0 ± 10%	K=3,5
UOBPmax	0%Un (±5%)	≥150		Plena	0 ± 10%	K=3,5
UOBPmed			Bifásico	Parcial	0 ± 10%	K=3,5
U40TP _{max}			Trifásico	Plena	0 ± 10%	K=3,5
U40TP _{med}	40%Un (±5%)		Triasico	Parcial	0 ± 10%	K=3,5
U40BP _{max}		≥830	Bifásico	Plena	0 ± 10%	K=3,5
U40BP _{med}				Parcial	0 ± 10%	K=3,5
U75TP _{max}				Plena	0 ± 10%	K=3,5
U75TP _{med}				Parcial	0 ± 10%	K=3,5
U75TP _{med} Q _{max}			Trifásico		Q _{max} /P _{max}	K=3,5
U75TP _{med} Q _{min}	75%Un (±5%)	≥1340			Q _{min} /P _{max}	K=3,5
U75TP _{min}				P _{min} *	0 ± 10%	K=6
U75BP _{max}				Plena	0 ± 10%	K=3,5
U75BP _{med}			Bifásico	Parcial	0 ± 10%	K=3,5
U75BP _{min}				P _{min} *	0 ± 10%	K=6

Tabla 50. Ensayos de huecos de tensión a realizar para MPE ≥ 110 kV

Requirements validation procedures:

<u>Spanish NTS</u>

	Technica	l standard	for monitoring the
		nce of power	er generating to EU Regulation
Review	modules	nce of power	ver generating
Review 1.0	modules 2016/63	nce of powe according 1	er generating to EU Regulation
	modules 2016/63	according according 1 Date	er generating to EU Regulation

	REQUIREMENT	_			E OF SMENT
Article [1]	Definition of Requirement	PGM Type	Subsection of the Technical Standard	РРМ	SPGM
13.2	Limited Frequency Sensitive Mode - Overfrequency (LFSM-O)	≥A	5.1	(S and T) or C**	(S and T) or C**
15.2.(a) and (b)	Remote power control capability and range	≥C	5.5	T or C	N/A
15.2.e	Power-frequency control	≥C	5.4	т	т
15.2.d	Frequency Sensitive Mode (FSM)	≥C	5.3	(S and T) or C**	(S and T) or C**
15.2.c	Limited Frequency Sensitive Mode-Underfrequency (LFSM-U)	≥C	5.2	(S and T) or C**	(S and T) or C**
21.2	Synthetic inertia during very fast frequency variations*	≥C	5.6	S	N/A
17.3	Recovery of active power after a fault	≥B	5.11	N/A	T (S***) or C**
14.3	Fault-ride-through capability of synchronous generators connected below 110 kV	≥B	5.11	N/A	T (S***) or C**
16.3	Fault-ride-through capability of synchronous generators connected above 110 kV	D	5.11	N/A	T (S***) or C**
20.3	Recovery of active power after a fault	≥B	5.11	T (S***) or C**	N/A
14.3	Fault-ride-through capability of PPMs connected below 110 kV	≥B	5.11	T (S***) or C**	N/A
16.3	Fault-ride-through capability of PPMs connected above 110 kV	D	5.11	T (S***) or C**	N/A
15.5.a	Black start*	≥C	5.12	N/A	T or C
15.5.b	Capability to take part in island operation*	≥C	5.13	S or C	S or C
15.5.c	Fast re-synchronisation capability	≥C	5.14	N/A	T or C
18.2.b	Reactive power capability at maximum capacity	≥B	5.7	N/A	(P) or C**
18.2.c	Reactive power capability below maximum capacity	≥B	5.7	N/A	(T) or C**
19.2	Power oscillation damping control	D	5.9	N/A	S or C
20.2.b and 20.2.c	Fast fault current injection at the connection point in case of symmetrical (3-phase) faults	≥B	5.11	T (S***) or C**	N/A
21.3. b	Reactive power capability at maximum capacity	≥B	5.7	(T) or C**	N/A
21.3.c	Reactive power capability below maximum capacity	≥B	5.7	(T) or C**	N/A
21.3.d	Reactive power control modes	≥B	5.8	T or C**	N/A
21.3.f	Oscillation damping control	≥C	5.10	S	N/A

Validation test documents allow three procedures to prove the grid code compliance:

- Simulation
- On-site test
- Certification

Requirements validation (certification):

Cere

Test Report Nº

Saturation at $|\Delta P1|/Pmax = 8\%$, regardless of the value in the table

21

BC-MR

火 HUAWEI

Entidad	Pais
Pakistan National Accreditation Council - PNAC	Pakistan
National Standardization Council of Thailand - NSC	Thailand
Comite Francais d'Accreditation - COFRAC	France
ENAC	Spain
Czech Accreditation Institute - CAI	Czech Republic
DANAK	Denmark
Bundesministerium f. Digitalisierung u. Wirtschaftsstandort	Austria
Belgian Organisation for Accreditation – BELAC	Belgium
Deutsche Akkreditierungsstelle GmbH – DAkkS	Germany
Hellenic Accreditation System S.A. – ESYD	Greece
Irish National Accreditation Board - INAB	Ireland
Sistema Nazionale Accreditamento - ACCREDIA	Italy
Dutch Accreditation Council - RvA	Netherlands
Norwegian Accreditation - NA	Norway
IPAC	Portugal
Swedish Board for Accred.& Conformity Assessment - SWEDAC	Sweden

Accreditation for test report and certification:

Full list: https://www.gometrics.net/que-es-la-acreditacion-enac/

68 Huawei Confidential

- Accreditation entities authorizes laboratories to do specific tests for specific normative.

- ILAC: facilitating trade by promotion of the acceptance of accredited test and calibration results

Grid code compliance for reactive power/voltage regulation:

RfG NC impact on PV sizing

RfG NC impact on BESS sizing

Example simulation for a generic BESS sizing with PowerFactory:

	BESS sizir	g requirements		
	Requirement	Value		
	Rated Active power at POI	50 MW		
	Voltage range at POI (pu)	0.9-1.1 pu		
	Rated HV	135 kV		
	Rated MV	30 kV		
	Rated LV	800 V		
	DC voltage	1080 V		
	Frequency	50 Hz		
	Power factor at POI	0,9438 ind / 0,9805 cap		
	Temperature	25		
	Altitude	800 m		
	HV/MV transformer data			
	Rated power	60/75 MVA		
d	Short-circuit impedance	13 %		
	No-load losses	0.05 % / KW		
-	Copper losses	0.3% / KW		

RfG NC structure and implementation

RfG NC structure and implementation Requirements validation (certification): *IEC 63409-7 DERMS at power system operator El PPC es el DERMS y el IED Sala de Control (Operador del Sistema) DERMS IEC61850 IED DC BUS AC BUS Bancada de Potencia **W**HUAWEI 78 Huawei Confidential

Full-lifecycle equivalent performance, optimal system configuration by

Higher Revenue

Pack and Rack Level Optimization to Achieve Constant Power with 100% DOD

Active charging direction

a pack optimizer is integrated in each Battery pack, and the BMIC in the pack monitors the voltage and temperature of each battery in real time. When the voltage of a battery pack is higher than that of other battery packs, the other battery pack will be charged with low current. This eliminates the inconsistency problem caused by battery series connection. Avoid the "Buckets Effect ". Improves available capacity by 2% in the first year.

Real-time balancing between battery packs ensures consistent battery pack capacities and sconstant, speceration (190%) DOD

- String PCS design, each rack is controlled independently. This eliminates battery rack inconsistency and prevents inter-rack "Buckets Effect ", battery pack overcharging & over discharging caused by inter-rack circulation.
- Monitor battery rack capacity in real time, adjust the output power, balance the capacity between racks, and discharge at constant power with 100% DOD.
- Improves available capacity by 4% in the first year.

Constant Power

ESS 100% DOD- Full Scope Constant Power Output Challenge

Traditional solution: battery packs and racks are connected in series and parallel.

Battery Packs in Series:

- Battery pack available capacities are different due to battery inconsistency and temperature differences. When a pack with small capacity is fully charged or discharged, other packs will stop charging or discharging.
- The differentiation of pack capacity become more and more severe with the increase of operating time without effective balanced management, which further accelerates the decline of available capacity of battery system.

Battery Racks in Parallel:

- When the battery rack with low capacity is fully charged or discharged, other racks stop charging or discharging. As a result, the battery rack is not fully charged or discharged, resulting in capacity loss and reducing the available capacity of the battery system.
- In addition, due to small internal battery resistance, even if the voltage difference between racks is only a few volts, the uneven current between racks will be very large. The deviation current will cause overcharge/discharge phenomenon in some battery racks, resulting lower efficiency, battery life, and even serious safety accidents.
 Impact on the constant power:
- After a single battery pack is put out, all the other batteries in the container stop discharging. As a result, the constant power discharge range is less than 100%, reducing the available capacity.

84 Huawei Confidential

Traditional Solution: Centralized PCS manages ESS

Constant Power

Smart O&M Built-in Liquid-Cooled PCSs: Complex Liquid Cooling Pipe and Cable Routing, O&M Longer than 8 Hours (16 Times Longer than That of External PCSs) All-in-one ESS with built-in PCSs **ESS with external PCSs** VS Diagram **External air-cooled PCSs** Maintenance: The PCS is easy to maintain. No complex cable connection is Maintenance: The PCS AC/DC power cables and liquid cooling pipes are complexly routed, involved and no dedicated tooling is required. The replacement takes 0.5 hour. making installation and maintenance difficult. The replacement takes more than 8 hours. Remove condensate Shut down the ESS, open the door, Remove all the cables and Use tooling to insert the **Disconnect the AC and DC power** water, dehumidify, and Manually replace Reconnect the AC and remove the liquid cooling ports liquid cooling pipes from the switch box and two supplies of only the faulty PCS and add coolant (about 1 L) and AC and DC power cables. switch box and PCSs. PCSs into the container. the PCS. and DC power cables. remove the AC and DC power cables. Use tooling to pull out the Replace the PCS, and Install AC power switch box and two PCSs (> reinstall the cables and cables and liquid 250 kg). liquid cooling pipes. cooling pipes. Low risks across the entire process, no need to open the High risks across the entire process, lower IP rating, and ESS O&M personnel directly dealing with the ESS 👐 HUAWEI 86 Huawei Confidential

Pack-level automatic SOC calibration, higher SOC precision, charging and discharging accurately, optimized system configuration by 4% @ *Microgrid scenario*

High precision Battery management Self-learning ((0)) CHIP **Integrated chip** voltage sampling algorithm Dedicated battery management chip, High-precision battery model Extremely high-precision higher computing power modeling, parameter identification, voltage sampling Cell-level automatic equalization feature extraction **Traditional Solution Smart String ESS 2.0** ≥5% 3% **High-precision automatic SOC Manual SOC calibration** calibration by experts on Site MUAWEI 87 Huawei Confidential

Huawei SoC Calibration Solution:

Ampere-hour integral + Full charge/deep discharge calibration + Power-on look

 Huawei's SOC solution mainly uses ampere-hour integral, and the remaining SOC is calculated based on the accumulated discharge capacity. Calibration of the SOC at full charge and deep discharge ;

 $SOC_k = SOC_0 - \frac{\sum I \Delta t}{rated \ capacity * SOH}$

② During full charge and deep discharge, the SOC is calibrated according to the battery voltage conditions based on the observer principle.

③ To identify the SOC decrease caused by self-discharge during initial startup and long-term unused use, the system obtains the initial SOC value based on the current open-circuit voltage.

The open-circuit voltage is the terminal voltage of the battery after the battery is fully static, and is directly mapped to the SOC.

88 Huawei Confidential

Huawei considers 19 factors to simulate the attenuation curve

Fitting Model Two Main Factors		Industry	Huawei	Impact
		3 to 5 factors	19 factors	more factors considered, more accurate result
		Cell cycle: 300-500 cycles	Cell cycle: 1250 cycles	More the number of times, the
0	Cell Degradatior	Test conditions/Quantity: 1 working condition	Test conditions/quantity: 2 to 3 working conditions, 3 PCS for each type	more the working conditions, the more accurate.
Cyclic degradation	Pack	Temperature rise: The temperature rise of the cell in the pack is not considered.	Temperature rise: The temperature rise of the cell in the pack must be considered.	Temperature is one of the top factors.
		Consistency: Generally, consistency differences are not considered and there is no design to prevent.	Consistency: Package Optimization and rack management avoid differences	Consistency is one of the top factors.
Storage d	legradation	Cell storage: degradation <mark>is not usually considered</mark>	Cell storage: test for 6 months + fitting, with degradation considered	Storage degradation account for about <mark>33%</mark> of the lifetime degradation.

SOH Guarantee

SC) H Guai	rantee				SOH Guarantee		
		tegory	warranty model	Data volume/time limit requirements	Note 1	Note 2		
1			SOH storage degradation data in 100% SOC at 25°C.	≥ 6 months data (at least 6 data records)	Provide data + fit curve			
2	1	Storage	SOH storage degradation data in 100% SOC at 45°C.	≥ 6 months data (at least 6 data records)	Provide data + fit curve	Data storage volume ≥ 6 months, at		
3]	Degradation Data	SOH storage degradation data in 50% SOC at 25°C.	≥ 6 months data (at least 6 data records)	Provide data + fit curve	least two temperature points (temperature difference ≥ 10°C)		
4			SOH storage degradation data in 50% SOC at 45°C	≥ 6 months data (at least 6 data records)	Provide data + fit curve	$(temperature difference \ge 10 C)$		
5	Cell data		SOH cycle degradation data at 25°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	The number of cycles is greater than or		
6	1		SOH cycle degradation data at 35°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	equal to 1/8 + 50, and at least three temperature points (temperature		
7]	Cycle data	SOH cycle degradation data at 45°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	difference is greater than or equal to		
8]		SOH cycle degradation data at 25°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	5° C). The maximum rate and $1/2$		
9]		SOH cycle degradation data at 35°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	maximum rate data are required.		
10			SOH cycle degradation data at 45°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve			
11		Consistency	Consistency of cells in the same container, including capacity and internal resistance	Data of each electrochemical cell during shipment. Cell \rightarrow pack \rightarrow container corresponds to each other.		By apply pack optimization & Rack management can avoided this		
12			Temperature difference consistency of the PACK in different positions			degradation. Competitors do not consider this function		
13	Pack data		Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.5CP charge and discharge					
10				Temperature rise	Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.33CP charge and discharge			Some competitors do not consider this part.
14			Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.25CP charge and discharge					
45			Operating ambient temperature		Calculated by Huawei based on the average dimension and temperature rise.	1		
15	0		Daily cycle times		Calculated by Huawei based on the customer's working conditions			
16		data (provided by the customer)	Charge/discharge ratio		Huawei calculated based on the customer's working conditions			
17			Storage SOC		Huawei uses 50% SOC storage.			
18 19			DOD		Huawei calculates the DOD based on 100%.			
	92 Huaw	vei Confidential				HUAWEI		

Higher Revenue

All-lifecycle cost-effectiveness: Optimal comprehensive investment, increasing ROI by 3%- 8% and discharge capacity by over 9.7% throughout the life cycle

Central Solution: Comparison in Discharge Performance, Availability Maintenance Efficiency, and Configuration Flexibility

	Item	Central Architecture	Huawei's String Architecture
E	SS architecture	Multiple battery racks are connected in parallel and then connected to the central high-power PCS.	Each battery rack is managed by the DCDC, combined, and then connected to string PCSs, no power derating or backfeed during HVRT
D	scharge performance	Low. Mismatch between parallel-connected racks, lack of inter-rack balancing, affecting the charge and discharge capacity	High. No mismatch between racks connected in parallel, discharge capacity increased by 7%+ (at the end of the 10th year) compared with the central solution
A	va <mark>ilability</mark>	Low,. Bulky central equipment, large scope of fault impact	High. DCDC rack-level management, modular PCS, high availability Faulty PCS replaced within 30 min, narrow scope of fault impact, high availability
м	aintainability	Low. Bulky central equipment needs to be maintained by experts onsite, resulting in complex maintenance or replacement process and high costs.	High. Modular, easy maintenance, high replacement efficiency
С	alibration	Manual calibration, ESS power-off required, high equipment and labor costs	Automatic calibration, no need for power-off or site visit
c	onfiguration flexibility	Low. Old and new batteries cannot be used together. To expand capacity, both batteries and PCSs need to be added, affecting the AC capacity.	High. Racks can have difficulty configurations. Old and new racks can be used together. Capacity expansion does not affect the AC capacity.
		Rack-level management unavailable, circulating current between racks, high safety risks	Intelligent rack-level management, no circulating current between racks , no thermal safety risk due to circulating current
S	Safety and reliability	Passive shutdown, fuse	4-level active + 2-level passive, intelligent active/passive protection Automatic alarm reporting for rack-level faults, local fault isolation (overcurrent protection and short-circuit protection for the rack controller), passive shutdown and isolation (battery side)
		IP55 rating, C3 to C5 corrosion resistance	Higher structure protection, IP66 rating, and C5 corrosion resistance , ensuring stable and reliable operation in extreme environments
		SCR > 1.2, THDi ≤ 3%, weak energy in weak power grids, weak power quality	Adapting to weak power grids; stable operation in weak power grids with SCR = 1.1, THDi ≤ 1.5%, good power quality
		Active power derating and backfeed during 1.3 Un HVRT, SOC < 10%, PCS failure risk	Active power not derated during HVRT in the SOC range of 0% to 100%
	n-grid performance	No use case of grid forming	100 MWh-level POC test by China Electric Power Research Institute, the world's only vendor that has completed manual short-circuit tests at the 35/110 kV voltage level
		Weak simulation capability	Providing global modeling and simulation capabilities; adapting to global grid codes; stable grid connection in various complex power grid environments

94 Huawei Confidential

Challenges in Battery Energy Storage System Industry

Low Available Capacity

 Series & Parallel mismatch due to inconsistency between battery cells, which leads to lower available capacity according to Cannikin Law

Pack & Rack Optimizer

Complex O&M

- On-site battery installation wiring & commissioning
- Regular SOC calibration by professional staff

No need for periodic balancing No need for experts to visit sites

Fire Risks

- Battery cell over-charge, overdischarge ,or other faults
- Key components(circuit boards, contactors, etc.) failure cause sparking and arcing

Cell to system safety protection Avoid thermal runaway

Grid Forming

EU considers grid forming as a key to high wind/solar penetration

The European Power Grid Code (RfG) raised requirements of Grid Forming for Type A-D power generating modules

Grid forming increase absorption of PV capacity by 40%

LCOS Calculator Basis Mid Complexity LCOS		20.00 MW BESS LCOS Calculator	80 MWh HUAWEI	@POI Description
	BESS SPECIFICATIONS	ESS Model ESS rated capacity (MWh / unit) ESS quoted quantity Installed rated capacity (MWh) Installed Power (MW) C-Rate Economic Investment Horizon (years), lifespan	LUNA2000-4472-2S 4.472 20 89.44 22.36 0.25 20	Total Energy Total Power C/D Duration BOL; 0.25C=4h; 0.5C=2h System Lifetime
$LCOS = \frac{\sum (Capital_t + 0\&M_t + Fuel_t) \cdot (1+r)^{-t}}{\sum MWh_t \cdot (1+r)^{-t}}$ Where: Capital, = Total capital expenditures in year t O&M_t = Fixed operation and maintenance costs in year t Fuel, = Charging cost in year t MWh, = The amount of electricit discharged in MWh	CAPEX	Capital Intensity (ratio, k€/MWh storage capacity) Upfront Cost - CAPEX (€) (Commercial offer) CAPEX gap (%), respect HUAWEI IRR Target, pre-tax (% p.a.) Annuitised build cost (€/year) BOS (€/installed capacity)	150 € 13,416,000 € 0% 7% 1,266,375 € 10,389 €	Hardware, Software, service, warranties Internal Rate of Return Annual cost inc interest
$r_{\rm in} = -1$ is another of electricity discharged in symmetry in year t, measure for the capacity factor $(1+t)^4$ = The discount factor for year t	OPEX	O&M + Sust. Capex (% of Upfront Costs p.a.) O&M + Sust. Capex (EUR per year)	3.0% 402,480 €	Cost of O&M as a percentage of Capex Opex cost
f f = (a + e) / c LCOS a CAPEX + OPEX "Capital + O&M" e Electricity purchase costs "Fuel" e = b x d Electricity required to charge x Avg. Purchase Price	BESS CONFIGURATION SPECIFICATIONS	Is SOH degradation curve considered? Depth of discharge (% of total storage that can be cycled) Cycles per day (CPD) Roundtrip efficiency (%) [@POC RTE (with auxiliary efficiency)] Battery Pack Mismatch (1st year) Battery Rack Mismatch (1st year)	No 100% 1 90.0% 0.0% 0.0%	DOD Full equivalent cycles per day Round trip efficiency of overall system
c Electricity output "MWh" Electricity output Electricity Required x "Efficiency" Electricity required Capacity x Cycles x DOD "Efficiency" RTE x (1- mismatch%)	a	Bately rack instruction (1st year) BESS Availability Charge efficiency @PCS output [%] Overall available capacity ratio, over ESS rated capacity @POC [%] Total economic cost before charge costs (€/year) Electricity required to charge (MWh pa/year)	98.4% 94.87% 93.31% 1,668,855 € 34.411	Huawei Optimizer Huawei Smart Rack Controller
	C c = a / c d e = b x d	Electricity required to charge (MWh pa/year) Electricity output from discharge (MWh pa) Levelised cost per MWh discharged, before power purchase costs (€/MWh) Average purchase price when charging (€/MWh) Electricity purchase costs (€/year)	599,507 57 € 60 2,064,653 €	Storaged energy Cost of electricity per MWh to charge the battery
100 Huawei Confidential	f = (a + e) / c	LCOS, per discharged MWh (€/MWh)	126.10 €	火 HUAWEI

LCOS Sensitivity Multiple benefits from Huawei system

IV	luitiple benefits from Huawel system			The lesis helping the consist vity and usis is to support if.
1	20 MW	80 MWh	@POI	The logic behind the sensitivity analysis is to quantify
	BESS LCOS Calculator	HUAWEI	VENDOR B	the impact of pack level optimizer by:
	ESS Model	LUNA2000-4472-2S	XXXX	
	ESS rated capacity (MWh / unit)	4.472	5.016	1) Assuming exactly the same specifications of all
DECO	ESS quoted quantity	20	17	
BESS	Installed rated capacity (MWh)	89.44	85.27	Technical parameters.
	Installed Power (MW)	22.36	18.89	 Modify the capital intensity ratio (€/MWh) to
	C-Rate	0.25	0.22	aim for the same LCOS.
	Economic Investment Horizon (years), lifespan	20	20	
	Capital Intensity (ratio, k€/MWh storage capacity)	150 €	126 €	
	Upfront Cost - CAPEX (€) (Commercial offer)	13,416,000 €	10,737,918 €	
CAPEX	CAPEX gap (%), respect HUAWEI	0%	-19.96%	Means around 20% CAPEX "gap"
CAPEA	IRR Target, pre-tax (% p.a.)	7	%	to have same LCOS
	Annuitised build cost (€/year)	1,266,375 €	1,013,583 €	to have same LCOS
	BOS (€/installed capacity)	10,389 €	7,632 €	
OPEX	O&M + Sust. Capex (% of Upfront Costs p.a.)	0.0%	0.3%	Without additional OPEX due to calibration
UFEA	O&M + Sust. Capex (EUR per year)	0€	32,214 €	
	Is SOH degradation curve considered?	N	lo	
	Depth of discharge (% of total storage that can be cycled)	100%	100%	
	Cycles per day (CPD)	1	1	
BESS	Roundtrip efficiency (%) [@POC RTE (with auxiliary efficiency)]	90.0%	90.0%	→ Same RTE
CONFIGURAT	ION Battery Pack Mismatch (1st year)	0.0%	-2.0%	+2% extra discharged energy
SPECIFICATIO	DNS Battery Rack Mismatch (1st year)	0.0%	0.0%	in ano and with most optimizars
	BESS Availability	98.4%	98.0%	increase with pack optimizers
	Charge efficiency @PCS output [%]	94.87%	94.87%	
	Overall available capacity ratio, over ESS rated capacity @POC [%]	93.31%	93.31%	Same Discharge efficiency
а	Total economic cost before charge costs (€/year)	1,266,375 €	1,045,797 €	
b	Electricity required to charge (MWh pa/year)	34,411	34,411	
S C	Electricity output from discharge (MWh pa)	599,507	557,861	
c = a / c	Levelised cost per MWh discharged, before power purchase costs (€/MWh)	44 €	39€	
d	Average purchase price when charging (€/MWh)	6	0	
e = b x d	Electricity purchase costs (€/year)	2,064,653 €	2,064,653 €	
f = (a + e)	/ c LCOS, per discharged MWh (€/MWh)	112.68 €	112.68 €	> Same LCOS
	Please note that figures on this presentation are indicative, and are	advertised as a gu	ide only.	

Pack Level Optimization to Achieve higher discharged energy

Huawei LUNA2000-4472-2S Smart String Energy Storage System Battery Pack Active Equalization Function Test Report

TUV

After three full cycles **Rack 1** has no recovered of the series mistmatch and the energy output is heavily limited,

while, the SOC deviation in the Rack 2 is reduced to less than 2%, reaching a discharge of 723,59kWh, +90% higher available output capacity than Rack 1. No cost

Active balancing with optimizer at pack level, considerably

increases the

available capacity automatically, without Automatic calibration No site visit manual interaction

ESS Technical Due Diligence Report by TÜV, ID-Number: SMN_GCN_F_37.00CS

Third Discharge

LCOS: Overall levelized cost p	ber MWł	h				
BESS LCOS Calculator	HUAWEI	HUAWEI	HUAWEI			
ESS Model		LUNA2000-4472-2S				1
ESS rated capacity (MWh / unit)	4.472	4.472	4.472			
ESS quoted quantity	20	20	20	Cycling ten	perature	
Installed rated capacity (MWh)	89.44	89.44	89.44	Cycling (Tuntos	Cycle Life
Installed Power (MW)	22.36	22.36	22.36	Cyching C	-rates	model
C-Rate	0.25	0.25	0.25	No. of c	ycles	Lifetim
Economic Investment Horizon (years), lifespan	20	20	17			(capacity f
Capital Intensity (ratio, k€/MWh storage capacity)	111€	111 €	111 €	Relaxation te	mperature —	(capacity i
Upfront Cost - CAPEX (€) (Commercial offer)	9,972,110 €	9,972,110 €	9,972,110 €	retuxation te	mperature	
CAPEX gap (%), respect HUAWEI	0%	0%	0%	Relaxatio	on SoC	Calendar
IRR Target, pre-tax (% p.a.)	7%	7%	7%	D I		Life model
Annuitised build cost (€/year)	941,297 €	941,297 €	1,021,395 €	Relaxatio	on time	
BOS (€/installed capacity)	10,389 €	10,389 €	10,389 €			
O&M + Sust. Capex (% of Upfront Costs p.a.)	3.0%	3.0%	3.0%			
O&M + Sust. Capex (EUR per year)	299,163 €	299,163 €	299,163 €	Unsubsidized I	evelized Cost of	f Storage Comparison—Energy (\$/MWh)
Is SOH degradation curve considered?	No	No	No	Lazard's LCOS analysis e	valuates storage systems o	on a levelized basis to derive cost metrics based on annual energy output
Depth of discharge (% of total storage that can be cycled)	100%	100%	100%		(100 MW / 100 MWh)	\$153 \$250
Cycles per day (CPD)	1	1.5	2		(100 MW / 200 MWh)	
Roundtrip efficiency (%) [@POC RTE (with auxiliary efficiency)]	90.0%	90.0%	90.0%		(100 MW 1 200 MWH)	3140 2463
Battery Pack Mismatch (1st year)	0.0%	0.0%	0.0%	t-of-the	(100 MW / 400 MWh)	\$132 \$245
Battery Rack Mismatch (1st year)	0.0%	0.0%	0.0%	토 💦 Transmission a	nd (10 MW / 60 MWh)	NA/9
BESS Availability	98.4%	98.4%	98.4%	E (2) Iransmission a Distribution ⁽¹⁾	(TO MAY YO MAN)	TUC*
Charge efficiency @PCS output [%]	94.87%	94.87%	94.87%	3 Wholesale (PV+Storage)	(50 MW / 200 MWh)	\$31 \$124
Overall available capacity ratio, over ESS rated capacity @POC [%]	93.31%	93.31%	93.31%	Commercial 8	(1 MW/2 MWh)	
Total economic cost before charge costs (€/year)	1,240,460 €	1,240,460 €	1,320,559 €	4 Industrial (Standalone)	(1 MW / 2 MWh)	3425 2380
Electricity required to charge (MWh pa/year)	34,411	51,616	68,822	5 Commercial 8 Industrial (PV+Storage)	(0.5 MW / 2 MWh)	\$247 \$319
Electricity output from discharge (MWh pa)	599,507	899,261	1,019,163	C Residential	(0.006 MW / 0.025 MWh)	
/elised cost per MWh discharged, before power purchase costs (€/MW <mark>h</mark>)	43€	29 €	27 €	(PV+Storage)	(0.006 MW / 0.025 MWh)	3406 \$506
Average purchase price when charging (€/MWh)	60	60	60		\$0	\$100 \$200 \$300 \$400 \$500 \$600 \$700 \$800 [Levelized Cost (\$/MWh)]
Electricity purchase costs (€/year)	2,064,653 €	3,096,979 €	4,129,305 €	Source: Lazards	LCOS analys	sis

Minimum Installed Capacity Calculation

In-depth understanding of the seven key elements of energy storage project solution configuration to help maximize customer benefits.

Caculation at same level:

Name	Nominal MWh	RTE@PCS	DOD	Storage	Avalibility
BX	95.2	87%	95%	2.5%	98%
SX	93.5	89.5%	98%	2.5%	98%
CT	95.3	88.5%	95%	2.5%	98%
TX	92.5	90%	98%	2.5%	98%

Minimum Installed capacity should follow all calculation parameters, other company tend to overpromise

LCOS Co	mparison Results	20.00 MW	80 MWh	@POI
	BESS LCOS Calculator	HUAWEI	VENDOR B	Description
	ESS Model	LUNA2000-4472-2S	XXXX	
	ESS rated capacity (MWh / unit)	4.472	5.016	
DECO	ESS quoted quantity	20	17	
BESS SPECIFICATIONS	Installed rated capacity (MWh)	89.44	85.27	Total Energy
	Installed Power (MW)	22.36	19.30	Total Power
	C-Rate	0.25	0.23	C/D Duration BOL; 0.25C=4h; 0.5C=2h
	Economic Investment Horizon (years), lifespan	20	20	System Lifetime
	Capital Intensity (ratio, k€/MWh storage capacity)	130 €	110 €	
	Upfront Cost - CAPEX (€) (Commercial offer)	11,627,200 €	9,379,920 €	
CAPEX	CAPEX gap (%), respect HUAWEI	0%	-19.33%	Hardware, Software, service, warranties
CAPEA	IRR Target, pre-tax (% p.a.)	7%	6	Internal Rate of Return
	Annuitised build cost (€/year)	1,097,525 €	885,398 €	Annual cost inc interest
	BOS (€/installed capacity)	10,389 €	7,632 €	
OPEX	O&M + Sust. Capex (% of Upfront Costs p.a.)	3.0%	3.3%	Cost of O&M as a percentage of Capex
OFEX	O&M + Sust. Capex (EUR per year)	348,816 €	314,040 €	Opex cost
	Is SOH degradation curve considered?	No	b	
	Depth of discharge (% of total storage that can be cycled)	100%	100%	DOD
	Cycles per day (CPD)	1	1	Full equivalent cycles per day
BESS	Roundtrip efficiency (%) [@POC RTE (with auxiliary efficiency)]	90.0%	88.1%	Round trip efficiency of overall system
CONFIGURATION	Battery Pack Mismatch (1st year)	0.0%	-2.0%	
SPECIFICATIONS	Battery Rack Mismatch (1st year)	0.0%	-4.0%	
	BESS Availability	98.4%	98.0%	Huawei Optimizer
	Charge efficiency @PCS output [%]	94.87%	94.64%	Huawei Smart Rack Controller
	Overall available capacity ratio, over ESS rated capacity @POC [%]	93.31%	92.22%	
а	Total economic cost before charge costs (€/year)	1,446,341 €	1,199,438 €	
b	Electricity required to charge (MWh pa/year)	34,411	34,494	
С	Electricity output from discharge (MWh pa)	599,507	528,797	Storaged energy
c = a / c	Levelised cost per MWh discharged, before power purchase costs (${\mbox{\sc e}}/{\mbox{ m MWh}}$)	50 €	47 €	
d	Average purchase price when charging (€/MWh)	6()	Cost of electricity per MWh to charge the battery
e=bxd	Electricity purchase costs (€/year)	2,064,653 €	2,069,645 €	

Please note that figures on this presentation are indicative, and are advertised as a guide only.

Flexible warranty and performance warranty promotion strategies

- Key challenge: As customer scenarios may vary, quantitative analysis of the impact of SOH and failure rate is required under different working conditions.
- **Overall strategy**: Obtain the SOH degradation curve under variable working conditions (enter the working condition, rate, number of cycles, DOD, and storage SOC).

SOH	RTE	Capacity
Power	Availability	DOD

Example:

C rate	0.25C @constant power
SOC	0.5
DOD	1
Ambient temperature	below 40°C
Number of cycles/day	1
Interval between charge & discharge/hour	2

108 Huawei Confidential

Flexible SOH warranty scheme

Calculation Description

- Specify the operating conditions of the ESS, including C-rate, DOD, average SOC, numbers of cycle per day and so on.
- Base on <Huawei BESS SOH Degradation Curves based>, find the SOH curve corresponding to the initial operating condition, and find the SOH value (X) corresponding to the last year of this condition.
- Find the SOH curve corresponding to the second operating condition and the SOH value (Y) closest to the SOH value (X) in the first working condition.
- Base on the SOH curve corresponding to the second operating condition, calculate the differential value (Δ) between the current SOH value (Y) and SOH values each subsequent year.
 Subtract the differential value (Δ) from the SOH value (X) of the first operating condition to obtain the SOH list for the duration
- of the second operating condition. If more operating conditions are involved, refer to the above steps until the SOH is less than 60%.

Example Description

Project Conditions:

-	First Operating Condition	Second Operating Condition
Type of ESS	LUNA2000-4.5MWH-2H1	LUNA2000-4.5MWH-2H1
C-rate	0.5C	0.5C
Max. Temperature	< 40 ℃	<40°C
Altitude	<4000m	<4000m
DOD	100%	100%
Average SOC	≤50%	≪50%
Cycle per day	1	1.5
Term of Year	0-5	6-EOL

Flexible SOH warranty scheme

Calculation:

- According to first operating condition, find the SOH rack @ 1cycle/day and the SOH value (X) at the end of 5 year is 87 %;
- 2. According to second operating condition, find the SOH rack @ 1.5cycle/day and the SOH value (Y) closest to the SOH value (X) in first operating condition is 87 %;
- 3. The differential SOH value (Δ_1) between Y and the SOH value next year (Y_1)= 87% 85%=2%. So the SOH value at the end of six year = 87% 2% = 85%;
- 4. The differential SOH value (Δ_2) between Y_1 and the SOH value next year (Y_2)= 85% 83%=2 %. So the SOH value at the end of seven year = 85% 2 % = 83%;
- 5. According to this method, the SOH of the 8th, 9th, and end of year is calculated.

Huawei BESS SOH Degradation Curves based @ 0.5C

End of Year	SOH @1 cycle/day	SOH @ 1.5 cycle/day	SOH @ 2 cycle/day
0	100%	100%	100%
1	95%	94%	93%
2	92%	91%	90%
3	90%	89%	87%
4	89%	87%	85%
5	87%	85%	82%
6	86%	83%	80%
7	84%	81%	77%
8	83%	79%	75%
9	81%	77%	72%
10	80%	75%	70%
11	79%	73%	68%
12	77%	71%	65%
13	76%	70%	63%
14	75%	68%	61%
15	74%	66%	
16	72%	64%	
17	71%	62%	
18	70%	61%	
19	68%		
20	67%		

Flexible warranty: According to SOH, adjust the conditions to meet

Strategy:

- □ Solution team provides the SOH curve;
- Before EOL, customer uses at different conditions and equerry the remaining SOH at the end of each year.
- □ Inform customer the remaining SOH, calculate the yearly price based on new conditions.

Working conditions	Condition A	B Conditions	
BESS Solution	LUNA2000-4.5MWH-2H1	LUNA2000-4.5MWH-2H1	
C/D-rate	0.5C	0.5C	
CPD	1	1.5	
DOD	100%	100%	
SOC	50%	50%	
Maximum Warranty Period	20 years	15 years	
	SOH degradation of	curve	

U							
End	SOH (%)	SOH (%)	SOH (%)	SOH (%)	SOH (%)		
Year	@0.9cycle/day	@ 1 cycle/day	@ 1.2 cycle/day	@ 1.5 cycle/day	@ 1.8 cycle/day		
0	100.00	100.00	100.00	100.00	100.00		
1	95.02	94.88	94.61	94.23	93.85		
2	91.92	91.68	91.21	90.52	89.86		
з	89.29	88.95	88.30	87.36	86.45		
4	86.92	86.51	85.69	84.52	83.40		
5	84.76	84.26	83.30	81.93	80.62		
6	82.73	82.17	81.08	79.52	78.04		
7	80.83	80.20	78.99	77.27	75.64		
8	79.03	78.34	77.02	75.14	73.39		
9	77.31	76.57	75.14	73.14	71.26		
10	75.67	74.88	73.36	71.23	69.23		

SOH & Flexible Warranty

112 Huawei Confidential

