

Máster Formación Permanente Energías Renovables y Medio Ambiente

UNIVERSIDAD POLITÉCNICA DE MADRID

POLITÉCNICA

Universidad Politécnica de Madrid

XVIII Edición 2023-24

Módulo 15 Plantas híbridas y de almacenamiento

El Litio y la Seguridad de los sistemas de almacenamiento

Andrés Hernando Ros Huawei Spain Digital Power

Learning Objectives

- To understand the basic concept and categories of energy storage technology, to understand the working principles, advantages, disadvantages and current application status of different energy storage technologies, and construct the overall cognition of energy storage technology.
- In-depth understanding of the working principle, material system, technology trends, and composition of lithium-ion battery energy storage system;
- Learn about applications of lithium-ion battery energy storage systems in multiple areas
- Learn about the safety, service life and other characteristics of lithium-ion battery energy storage systems.

Huawei: Leading provider of ICT infrastructure and smart devices

Vision & mission

Bring digital to every person, home and organization for a fully connected, intelligent world

Huawei Confidential

4

High penetration renewable energy has led to weak grid and the issue of stability of the power system

Challenges in Battery Energy Storage System Industry

Low Available Capacity

 Series & Parallel mismatch due to inconsistency between battery cells, which leads to lower available capacity according to Cannikin Law

Complex O&M

 On-site battery installation wiring & commissioning

٠

Regular SOC calibration by professional staff

Fire Risks

- Battery cell over-charge, over-discharge, or other faults
- Key components(circuit boards, contactors, etc.) failure cause sparking and arcing

Stable Grid Forming Stable Unstable Improved grid following Wind/Solar 30% 50% 70% 100%

Grid Forming EU considers grid forming as a key

The European Power Grid Code (RfG) raised requirements of Grid Forming for Type A-D power generating modules

Grid forming increase absorption of PV capacity by 40%

Pack & Rack Optimizer

No need for periodic balancing No need for experts to visit sites

Cell to system safety protection

Cover Multiple Scenarios Such as Power Generation, Transmission, and Consumption, Improve Wind and PV Power Integration, Stabilize Power Consumption Costs

- Generation: Replace the conventional genset power supply with the joint operation of PV+Wind+ESS. Promote PV+Wind+ESS to optimize the PPA electricity prices of PV+wind.
- **G**rid: Leverage ESSs in power grid services to ensure the stability and balance of power grid operations.

Consumption: Promote PV+ESS to improve self-consumption, facilitate time-of-use (ToU) arbitrage, and delay power distribution network revamping to reduce power consumption costs.

Seven Business Models for ESS Customers, Ensuring Safe, Stable, and Balanced Power Grid Operations

	Gene	eration		Consumption			
cenarios	PV+Wind+ESS PPA	Long-duration PV+Wind+ESS power supply	Energy market	Capacity market	Frequency regulation market	Grid forming market	Microgrid market
iness models Sc	 Sign the ToU PPA to generate revenue based on the ToU arbitrage model. 	 Generate power based on the around-the-clock output curve and obtain the PPA revenue. If the output curve is not followed, corresponding penalty rules will apply. 	 Obtain revenue based on the electricity price forecast and charge/discharge price differences between peak and off-peak periods. 	 Compete with conventional generators in grid capacity compensation bidding. A fixed contract for 15 to 17 years will be signed if the bid is won. A notice is sent in advance. If the capacity requirements are not met, a penalty will be imposed. 	 Fair bidding for ESSs and conventional generators Power compensation will be achieved if the bid is won. Energy compensation will be available if required. If the response time, adjustment precision, and compensation requirements for adjustment are not met, penalties will be imposed. 	 Fair bidding based on grid forming service technical requirements for condensers, retired thermal power facilities, and grid-forming ESSs Penalties will be imposed if the response time, inertia/reactive support capability, and availability requirements are not met. 	 In PPA mode, the IPP sells electricity only during the period with sufficient irradiance (8 am to 18 pm) in the daytime. The ESS configuration is reduced as much as possible, the initial investment is reduced, and the payback period is shortened. Only the ROI of the PV+ESS system is considered.
Bus	Energy (kWh) 2005/MWh	Capacity (KW) 605/kW Gos/kw Time 6am 12pm 6pm 12am	Being pait Along Being pait Along Stationary	Capacity (kW) e.g. 605/kW Time (year) 1 5 10 15	Frequency (Hz) ESS charging ESS charging ESS contracting Time (min)	Provide reactive active power or- for power for- voltage y recover recovery y	 The customer-built mode is used to reduce the comprehensive power supply cost. The construction can be performed in batches, and the PV+ESS substitution rate will be gradually increased.
Scenario characteristics	Low LCOE of PV+ESS power generation The actual charge and discharge curves match the curves in the quotation. Output based on power grid dispatching requirements	 Low LCOE of PV+ESS power generation Stable supply of constant power based on constant power to loads More accurate wind+PV power generation curve 	 More accurate electricity price prediction in the power market The actual charge and discharge curves match the curves in the quotation. Charge when the electricity price is low and discharge when the electricity price is high based on the power grid dispatching requirements. 	 The discharge capacity at the POC remains unchanged within the contract period of 15 to 17 years. The system keeps online around the clock at constant power and can be dispatched by the power grid at any time. 	 Keeping online around the clock, ensuring high availability in all scenarios More accurate prediction of frequency regulation prices Fast frequency regulation: high requirements on response time Primary frequency regulation: requirement for a wide range at constant power; secondary/tertiary frequency regulation: high efficiency regulation: high efficiency 	 Keeping online around the clock, real-time grid inertia and transient voltage support A longer inertia adjustment process and stronger reactive support indicate greater revenue. 	 Applies to areas with no or weak power grids to replace gensets, ensuring power supply and reducing the overall power consumption cost.
Key requirements	Capacity usage Round-trip efficiency (RTE) Availability	 Capacity usage RTE Availability 	Capacity usage RTE Availability	 Capacity usage Discharge efficiency Flexible augmentation Availability 	 Prevenue proportion Online around the clock, high availability SOC range at constant power High SOC precision Shorter response and adjustment time 	 Online around the clock, high availability Meeting admission requirements for the grid forming market Enhanced reactive overload capability and inertia duration 	 Full-stack solution Availability and reliability Easy commissioning and O&M
Regions	Chile, North America, etc.	South Africa, UAE, Philippines, etc.	China, Europe, North America, etc.	Italy, Poland, and Belgium UK, Ireland, and North America	West Europe (France, Germany, Czech, Belgium, etc.), North Europe, HI region, Singapore, UK, Ireland, etc.	China and Germany UK, Australia, etc.	China, Northern and Southern Africa, Latin America, etc.

Definition of Energy Storage Technology

Wikipedia: Energy storage or energy storage technology refers to the technology that stores energy and uses it when needed.

Generalized energy storage: energy storage is a cyclic process in which energy such as electric energy, thermal energy, and mechanical energy is stored from the same form or converted into another form, and then released in the form of specific energy when used in the future.

Energy storage in a narrow sense: refers to a series of technologies and measures that use chemical or physical methods to store electrical energy and release it when needed.

Mechanical energy storage - pumped storage hydropower

Mechanical energy storage - flywheel energy storage

Electromagnetic energy storage - supercapacitor energy storage

Electrochemical energy storage-lead-acid battery energy storage

A $2e^{-}$ Discharging p_{b0} $2H_{1}O$ p_{b0} $2H_{1}O$

Lead-acid batteries are one of the most widely used batteries in the world. The positive electrode (PbO2) and the negative electrode (Pb) in the lead-acid battery are immersed into the electrolyte Basic solution (sulphuric acid), and the battery is charged and discharged through the following reaction: **Principles** (positive electrode) (electrolyte) (negative electrode) PbO2 + 2H2SO4 + Pb --->PbSO4+2H2O+PbSO4 (discharge reaction, negative electrode oxidation, positive electrode reduction) (positive electrode) (electrolyte) (negative electrode) PbSO4 + 2H2O + PbSO4--->PbO2+2H2SO4+Pb (charge reaction, negative electrode reduction, positive electrode oxidation) **Advantages** 1) simple structure, safe and reliable; 2) Mature application, low price, and high cost-effectiveness 1) poor discharge performance at large discharge C-rate; downsides 2) low energy density (40-80Wh/kg); 3) Relatively less cycles (~1000 times) Application Lead-acid batteries are mostly used for starting power supply of automobiles and backup power Status

supply of electric power system. There is a trend of accelerated replacement by lithium-ion batteries.

Electrochemical energy storage-flow battery energy storage

Chemical energy storage - Hydrogen

Electrochemical energy storage - lithium ion battery energy storage

	chergy storage				
N		Basic Principles	When the battery is charged, lithium ion is removed from the positive electrode material, enters the electrolyte under the action of electric field force, passes through the diaphragm, migrates to the surface of the negative electrode material, and then is intercalated in the negative electrode material. When the battery is discharged, the transfer direction of lithium ion is opposite to that of charging.		
	A) Charging Process	Advantages	1) high energy density up to 300Wh/kg; 2) the charging and discharging efficiency is up to 90%; 3) cycles, up to 5000 times		
		Downsides	 The initial investment is higher than that of lead-acid batteries; Safety problems such as high heat and fire caused by improper management of over-charge and discharge 		
	LI LI LI LI LI LI LI LI LI LI	Application Status	 1) Lithium-ion batteries have excellent comprehensive performance and are widely used in portable and mobile devices such as electric vehicles, laptops, and mobile phones, and have become the most widely used batteries in the world; 2) Lithium-ion battery production is rising, prices are falling, and application space is expanding. In 2019, the installed capacity of power batteries for new energy vehicles is about 115.2 GWh, while the installed capacity of batteries in global electricity storage capacity is 8.5 GWh. 		
	26 Huawei Confidential		👐 HUAWEI		

Energy storage technologies for electriciy generation by type, rango of capacities, and general applications

Aspects of storage technologies:

- Range of application of storage technologies: Power output (MW) & Energy Storage (MWh)
- Storage technologies capacity in terms of discharge time at rated power which defined the system power ratings: Power Quality & UPS, Bridging Power and Energy Management
- Efficiency and lifetime of storage tecnologies (RTE Lifetime)
- Mass and volumen densities of storage technologies
- CAPEX and OPEX

Source: U.S. Energy Information Administration, adapted from Energy Storage Association Note: This is a general representation of the range of capacities and duration of electricity discharge for the types of energy storage technologies for electricity generation that are currently deployed in the United States. Excludes hydrogen, which potentially could encompass the entire range of capacities and discharge times. Some types, especially batteries, include technologies with a range of capacities and applications. kW is kilowatts; H is hours, MW is megawatts; GW is gigawatts.

Comparison of energy storage technology characteristics

		electrochemical energy storage		mechanical energy storage		electromagnetic energy storage
	Indicators	Lead-acid battery energy storage	Lithium ion battery energy storage	pumped storage hydropower	flywheel energy storage	double-layer supercapacitor
	Capacity scale	100 MWh	100 MWh	GWh	MWh	MWh
	Power scale	Dozens of MW	100 MW	GW	Dozens of MW	Dozens of MW
	Energy density / Wh. Kg-1	40 - 80	80 - 300	0.5 - 2	20 - 80	2.5-15
	Power density/W.Kg-1	150 - 500	1500 - 3000	0.1-0.3	> 4000	1000 - 10000
	Response Time	milliseconds	milliseconds	minutes	milliseconds	milliseconds
	Number of cycles	- 1000	2000 - 10000	> 10000	million times	million times
	service life	5 - 8 years	10 to 15 years	40 - 60 years	20 years	15 years
_	charge and discharge	70 - 80%	> 90%	70% - 80%	85% - 95%	> 90%
	Advantages	High security and low investment	high energy density, many cycles,	Large capacity and power scale,	High power density, many cycles, and high charge/discharge efficiency	High power density, more cycles and good safety
	disadvantage	The discharge performance of large C-rate is poor, Low energy density	Improper charging and discharging management leads to safety problems,	Slow response, limited by environment, long construction	Small capacity and high investment, Low energy density and high self-	Small capacity and high investment
		and fewer cycles	High initial investment	period, and impact on ecology	discharge rate	Low energy density
	Application Areas	Vehicle starting power supply,	Terminals, electric vehicles, and electric	Electric energy storage	Grid Power storage (grid frequency	Rail transit (braking energy
L	28 Huawei Confid	standby power supply dential	energy storage		modulation), UPS	recovery, start-up)

Charging process

During charging, the positive electrode material loses electrons, and lithium ion is de-intercalated from the positive electrode material.

□ Lithium ions reach the negative electrode through electrolyte and diaphragm and are intercalated in graphite layer, while electrons reach the negative electrode through outer circuit until charging is completed.

- During discharge, electrons exit from the negative electrode material and flow to the positive electrode through the outer circuit. Lithium ions also exit from the graphite after losing electrons.
- The de- intercalated lithium ions return to the positive electrode through the electrolyte and the diaphragm again, and combine the electrons that reach the positive electrode through the outer circuit to form a relatively stable lithium- intercalated positive electrode material;

What make batteries different?

Comparison of Energy Density

Comparison of Lithium-ion Battery

Lithium Ion Battery Performance Comparison

Currently, graphite is used as a negative electrode material for lithium ion batteries, and there are mainly lithium cobalt oxide batteries, ternary (NCM, NCA lithium batteries, lithium iron phosphate batteries, and lithium manganese oxide batteries according to different positive electrode materials used. When lithium titanate is used as the negative electrode material, it is called lithium titanate battery.

		lithium cobalt oxide Batteries	Lithium metal oxide (NCA or NMC) Batteries			Lithium titanate battery	
	Battery Type			Lithium iron phosphate battery	Lithium manganese oxide Batteries	Ternary/Lithium iron phosphate/Lithium manganate+Lithium titanate	
-	Voltage (V)	> 3.7	3.65	3.2	3.75	2.2	
	Volume Energy Density (Wh/L)	> 700	300 - 600	200 - 450	250 - 500	150 - 300	
	Mass Energy Density (Wh/kg)	> 200	> 200	120 ~ 180	100 ~ 120	80 ~ 100	
	Number of cycles	~ 1000	~ 2000	> 5000	1000 ~ 2000	> 10000	
	Operating temperature	- 20 ~ 60 ° C	- 20 ~ 60 ° C	- 20 ~ 60 ° C	- 20 ~ 60 ° C	- 20 ~ 60 ° C	
	Price (RMB/W)	1.5~2	0.6 to 1.0	0.5 to 0.8	0.5 to 0.8	3~5	
	Advantages and disadvantages	High volume energy density High price Poor security Few cycles	High mass energy density High price Poor security	Many cycles Low price Good security	Low mass energy density Low price Few cycles	Many cycles High security Low mass energy density High price	
	Application Scenario	3C	Electric vehicles (passenger cars), electric energy storage	Electric vehicles (bus, logistics), electric energy storage	electric bicycle	Electric bus	
1	Major Suppliers	ATL, Samsung SDI , LG, Murata, Lishen	CATL, Samsung, LG, Matsushita, BYD, Lishen, Gotion	CATL, BYD, Lishen, Gotion, EVE	Xingheng (phylion)	Toshiba, <u>Microvast</u> , JEVE, Yinlong	

Lithium batteries mainly used in new energy vehicles and energy storage

key specifications of Lithium-ion battery status

SOH

- The State of Health (SOH) indicates the ability of the current battery to store energy relative to the new battery. Currently, the SOH is not defined in a unified manner. The most common SOH is the percentage of the current available battery capacity to the nominal battery capacity.
- Accurately measuring the SOH of lithium batteries helps you know the battery health status in time.
- □ The ambient temperature, charge/discharge ratio and depth of charge/discharge are the main factors affecting SOH. When the battery temperature is too high or too low, the charge/discharge ratio is too large, and the charge/discharge ratio is too high, the SOH of lithium battery will be rapidly reduced.

SOC

- The State of Charge (SOC) indicates the current energy storage state of the battery, that is, the percentage of the remaining battery capacity to the total available battery capacity.
- SOC is the most important parameter of lithium-ion battery management. It not only reflects the remaining power of the battery, but also the estimation input of other parameters of the battery status, but also the important criterion of BMS (battery management system) control strategy.
- The SOC of lithium batteries cannot be measured directly. It can only be estimated by using the estimation model, such as battery cell voltage, charging and discharging current, temperature, and internal resistance.
- 37 Huawei Confidential

In the preceding example:

$$SOH = \frac{Abalibale \ capacity}{Normianl \ capacity} x100\% = 80\%$$

$$SOC = \frac{Remaining Capacity}{Abalibale capacity} x100\% = 75\%$$

Energy Storage Subsystem – Battery Pack and BMS

The PACK&battery cluster is the energy storage component of the energy storage system. When designing energy storage system, the cell and its grouping mode should be selected according to the voltage grade, capacity, power and PCS matching of energy storage The battery management system (BMS) is used to monitor battery system status, estimate battery status SOX, balance (passive equalization and active equalization), manage battery heat, alarm, protect system, and manage communication.

Energy Storage Subsystem - Power Conversion system (PCS) and Conversion System (PCS) and Conversion System (EMS)

The Power Conversion system (PCS) is responsible for the energy interaction between the energy storage system and grid. According to the access mode of the power grid, can be divided into two types: DC coupling and AC coupling.

The energy management system (EMS) makes control strategy according to load prediction, battery status and electricity price rules, and realizes energy management through PCS and BMS.

Energy Storage Cell Technical parameters

25°C, DOD100%

No.	Project	Bidder's Guarantee
1	Battery Type	Lithium iron phosphate
2	Nominal Voltage (V)	3.2 V
3	Nominal capacity (Ah)	280 Ah
4	Nominal charge current (A)	280 A
5	Maximum charge current (A)	280 A
6	Nominal Discharge Current (A)	280 A
7	Maximum Discharge Current (A)	280 A
8		2.0 V - 3.65 V
9	Voltage Range (V)	2.5 V - 3.65 V
10	Number of cycles	0.5C rated magnification/25°C EOL 60%, DOD 100%, cycle times ≥ 12,000
11	Energy efficiency	≥ 94%
12	Dimensions (W x D x H mm)	173.7 mm *72.0mm *207.5mm (2.59 dm3 (l))
13	Internal resistance (mΩ)	≤0.4 mΩ
14	Weight (kg)	5.42 kg
15	Storage temperature range (°C)	-40-65°C
16	Nominal Energy (KWh)	0.8961

6*21*1*18*0.8961=

2032 kWh

ESS 1.0

6*21*1*18=2268CELLS

2.59I * 2268= 5874 I = 5.87 m³

15.8% of container volume is cell space

ESS 2.0 Liquid cooling system 6*8*2*52*0.8961=

4472 kWh

6*8*2*52=4992CELLS

2.59l * 4992= 12.92 m³

34.9% of container volume cell space

20HC Container internal dimensions: Length: (5.89 meters) Width: (2.34 meters) Height: (2.69 meters) → 37m³

(1) Heat consumption during battery charging and discharging(76.6KW)

 $Q_{Pack} = Q_{Cell} + Q_{BMS} + Q_{Bushar}$

Q Pack=62.4KW (According to the 0.5CP charge rate and efficiency) Q BMS=1.6KW (including the BMU and active equalization module) Q Busbar=12.6KW (The copper aluminum bar of the battery module)

(2) Heat consumed by battery temp rise caused by battery heat(32KW)

 $Q_{absorb} = 0.5 * Q_{Pack}$

Q Pack about 50% of the cells are used to cause the temperature rise of the battery cells, and the other 50% are scattered into the cabin environment. Calculation value are 32.2 kW.

(3) Heat transferred from solar radiation to the container (0.92KW)

 $Q_{Irradiation} = 0.047 * Ab * A * K * E$

- Ab is the absorption coefficient of solar radiation, taken as 0.3

- A area on three sides of the container, 37.56 m2

-- K Heat transfer coefficient of the battery compartment, 2.3 W/(m2 x K)

- E solar radiation intensity, 753 W/m2

(4) Heat infiltrated from the outside environment through the combined transfer of convection and heat conduction(2.44KW) --Arotal, total heat transfer area, calculated as 70.64 m2

 $Q_{leakage} = A_{Total} * (T_{out} - T_{in}) * H$

(5)Heat consumption of the cluster c control=1.1KW

(6)Power cable and guick-connect terminal: Oline=1.3KW

(7)Heat absorption of mechanical parts in the battery compartment:

Q structure =4.011KW

Q Total = (1)-(2)+(3)+(4)+(5)+(6)-(7)=46.35KW

The test rate is 10% of the design margin and the required cooling capacity Q Final=1.1*Q Total=50.98KW

According to the design parameters of the liquid-cooled unit, the external temperature is 45°C, the water temperature is 22.5°C, the cooling capacity of the liquidcooled unit is 53 kW, and the total cooling capacity is 53kW > 50.98kW, meeting the design requirements.

- Tout Tin- Average temperature difference in the outer compartment of the battery compartment. The values are 45°C and 30°C

-- H, comprehensive heat transfer coefficient, take 2.3 W/(m2*K)

SEI Layer

A solid electrolyte interphase (SEI) is generated on the anode of lithium-ion batteries during the first few charging cycles. The SEI provides a passivation layer on the anode surface, which inhibits further electrolyte decomposition and affords the long calendar life required for many applications

The SEI layer on the anode is important for the safety of the battery. When the cell is heated above a threshold value, the SEI layer can begin to chemically decompose. This exposes the lithiated graphite to the non-aqueous electrolyte. The resulting chemical reaction is exothermic, releasing a continuous heat flow into the battery. This raises the internal battery temperature, which causes a runaway thermal reaction at the cathode when the cathode threshold temperature is exceeded.

...... 0000000 ERAF On July 30, 2021, a fire broke out at From 2017 to 2021, there were 30 fires On April 16, 2021, a fire at the the Tesla Megapack Energy Storage Dahongmen Energy Storage Power from energy storage power stations in Power Station near Geelong, South Korea, involving total battery Station in Fengtai, Beijing caused a Victoria, Australia, during the test capacity ~210MWh and direct economic 18 MWh battery system burn out process. The fire burned for 4 days loss of CNY 238 million. In 2020, the and a direct economic loss of ove before went out. installed capacity of ESS in South Korea CNY 16,000,000. Two firefighters decreased by 33.9% (vs. the global increase were killed, one station employee was killed and one firefighter was of 37.9%). injured. ESS TOP 3 Fire Causes: No. 3 No. 1 **Mis-operation in ESS Installation** No. 2 environmental tolerance erosion large current shock 60 Huawei Confidential

Energy storage system safety

MUAWEI

Energy Storage System Safety Cases

Installation performed incorrectly or the tool is incorrectly used. As a result, multiple modules are short-circuited.

Cables are not properly installed or not maintained for a long time. As a result, the cable ends are overheated over a long time usage.

Environmental Stability, good maintenance for Energy Storage Systems is extremely important

Huawei considers 19 factors to simulate the attenuation curve

	Fitting Model		Industry	Huawei	Impact
1	Two Main Factors		3 to 5 factors	19 factors	more factors considered, more accurate result
			Cell cycle: 300-500 cycles	Cell cycle: 1250 cycles	More the number of times, the
	Cuelie	Cell Degradation	Test conditions/Quantity: 1 working condition	Test conditions/quantity: 2 to 3 working conditions, 3 PCS for each type	more the working conditions, the more accurate.
	degradation	Pack Degradation	Temperature rise: The temperature rise of the cell in the pack is not considered.	Temperature rise: The temperature rise of the cell in the pack must be considered.	Temperature is one of the top factors.
			Consistency: Generally, consistency differences are not considered and there is no design to prevent.	Consistency: Package Optimization and rack management avoid differences	Consistency is one of the top factors.
	Storage degradation		Cell storage: degradation <mark>is not usually</mark> considered	Cell storage: test for 6 months + fitting, with degradation considered	Storage degradation accounts for about 33% of the lifetime degradation.

		Cat				Note 4	Note 2					
		Cat	legory	warranty model		Note 1	Note 2					
	1	1	a ,	SOH storage degradation data in 100% SOC at 25°C.	\geq 6 months data (at least 6 data records)	Provide data + fit curve	Data storage volume ≥ 6 months, at					
4	2	i l	Storage Degradation Data	SOH storage degradation data in 100% SOC at 45°C.	≥ 6 months data (at least 6 data records)	Provide data + fit curve	least two temperature points					
	3	1		SOH storage degradation data in 50% SOC at 25°C.	2 6 months data (at least 6 data records)	Provide data + fit curve	(temperature difference ≥ 10°C)					
4	4	1		SOH storage degradation data in 50% SOC at 45°C	2 6 months data (at least 6 data records)	Provide data + fit curve	The number of evelos is greater that					
Ę	5	Cell data		SOH cycle degradation data at 25°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	or equal to $1/8 + 50$ and at least					
6	6		Γ	SOH cycle degradation data at 35°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	three temperature points					
7	7	1	Cvcle data	SOH cycle degradation data at 45°C (1/2 max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	(temperature difference is greater					
6	8	i l	-,	SOH cycle degradation data at 25°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	than or equal to 5°C). The maximun					
ç	9			SOH cycle degradation data at 35°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	rate and 1/2 maximum rate data are					
1	0	1		SOH cycle degradation data at 45°C (max rate)	≥ 1 / 8 cycle specification + 50 turns	Provide data + fit curve	required.					
				Consistency of calls in the same container, including	Data of each electrochemical cell during		Py apply pack antimization & Back					
1	1			consistency of cells in the same container, including	shipment. Cell \rightarrow pack \rightarrow container		By apply pack optimization & Rack					
			Consistency		corresponds to each other.		degradation. Competitors do not					
1	2			Temperature difference consistency of the PACK in different positions			consider this function					
1	3	Pack data	Pack data	Pack data	Pack data	Pack data	Pack data		Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.5CP charge and discharge			
1	5					Temperature rise	Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.33CP charge and discharge			Some competitors do not consider this part.		
1	4			Temperature rise curve of the cell in the pack at an ambient temperature of 25°C and 0.25CP charge and discharge								
4	15				Operating ambient temperature		Calculated by Huawei based on the average dimension and temperature rise.					
I	5	Operating	Working condition	Daily cycle times		Calculated by Huawei based on the customer's working conditions						
1	6	condition data	data (provided by the customer)	Charge/discharge ratio		Huawei calculated based on the customer's working conditions						
1	7					Storage SOC		Huawei uses 50% SOC storage.				
1	8			DOD		Huawei calculates the DOD based on 100%						

TOP cell suppliers / energy storage manufacturers in the industry

TOP EV Batteries Manufacturers (2021 with 562 GWh)

Rank	Company	2021 Market Share	Country
#1	CATL	32.5%	China 📟
#2	LG Energy Solution	21.5%	Korea 🍽
#3	Panasonic	14.7%	Japan 🔹
#4	BYD	6.9%	China 💳
#5	Samsung SDI	5.4%	Korea 🚥
#6	SK Innovation	5.1%	Korea 🍽
#7	CALB	2.7%	China 💳
#8	AESC	2.0%	Japan 🔹
#9	Guoxuan	2.0%	China 💳
#10	PEVE	1.3%	Japan 🔹
n/a	Other	6.1%	ROW

Note: The data source of vehicle loading capacity is the automobile production certificate, and the loading capacity for multi-supplier of the same vehicle is calculated in avaergae.

TOP three battery makers — CATL, LG and Panasonic — combine for nearly 70% of the EV battery manufacturing market

Table 1: Energy storage manufacturers meeting BloombergNEF's tier 1 criteria as of 4Q 202

Firm (Decend	He a dama ta sa	Firm(Brand	Usedensetere
rimvorand	neadquarters	Film/ Brand	neadquarters
ZTT Energy Storage	China	Kehua	China
ZOE Energy Storage	China	Jinko	China
Windey Energy	China	JD Energy	China
WEIHENG	China	Invinity	UK
Wartsila	Finland	Hyperstrong	China
Trina Storage	China	Huawei	China
Tesla	US	Hithium	China
Tecloman	China	Great Power	China
SUNWODA	China	Gotion High-Tech	China
Sungrow	China	Fox ESS	China
Sermatec	China	Fluence	US
Samsung SDI	South Korea	FlexGen Power Systems	US
Roche Energy	China	Eve Energy	China
Robestec/Shanghai Ronghe	China	Eos Energy	US
Risen Storage	China	Envision Energy / AESC	China / Japan
REPT BATTERO	China	Cubenergy	China
RelyEZ	China	CRRC Zhuzhou	China
RCT Power	China	Comex	China
Pylontech	China	CLOU Electronics	China
Powin Energy	US	CHINT	China
PotisEdge	China	CATL (Contemporary Amperex Technology)	China
NHOA Energy	Italy	Canadian Solar e-STORAGE	Canada
Narada	China	CALB	China
Linyang	China	BYD	China
LG Energy Solution	South Korea		

Source: BloombergNEF. Note: Methodology is <u>here</u>. List is in reverse elphabetical order to avoid giving the impression that the order is relevant. We currently consider both cell providers and system integrators as energy storage manufacturers/ brands.

Introduction to Sodium Ion Battery

Sodium-ion batteries have similar working principles to lithium-ion batteries. The positive and negative electrodes are composed of two different sodium-ion intercalated compound

> Positive electrode: materials with high voltage platforms such as sodium-transition ٠ metal oxides, those materials which have potential application prospects are mainly classified as layered oxides, polyanions, and Prussian blue compounds.

	type	Specific composition	Advantages	Disdvantages
÷ ⊖ ccharge e ⁻ ↓ e ⁻	layered oxide	NaCuFeMnO2 (Hina battery)	 The theoretical capacity is higher than Fe-Li, but the actual capacity is close. The processing performance is similar to that 	 The transition metal is easy to catalyze electrolyte, which leads to poor cycling performance, material can be treated with
		NaNiFeMnO2 (Natron, Faradion)	of lithium batteries. 3. The precursor is mature materials in other industries, and the BOM cost is lower than that of lithium iron.	 surface to improve cycle performance. 2. Thermal runaway will decompose and generate oxygen; 3. The NaNiFeMnO2 material patent is not in China (Argon Laboratories).
	Prussian Blue	NaFe[Fe(CN)6] (Starry Sky, Natron, CATL)	 Use modified material from mature material in other industries, which is expected to have the lowest BOM cost. good safety and no oxygen generation; 	 The material contains crystallized water, causes high water content which affects the self-discharge and cycling life; Patents are not in China (Sharp)
e Al	polyanion	Na3V2(PO4)3 (Tiamat, Toyota)	 Good compatibility with electrolyte; The material stability is good and the cycling performance is good. Stable structure and high safety. 	 Poor C-rate performance and low energy density V is highly toxic and expensive, with low yield Patents not in China (Kyushu University and NGK, Japan)
alated I	News			

Negative electrode: Material having a low voltage platform such as carbon ٠

type	Advantages	Disdvantages
Anthracite (Hina battery)	Low BOM cost	Poor consistency and low capacity
Hard Carbon (Natron, Starry Sky, CATL)	Mature system and high capacity	High cost

Diaphragms: glass fiber, polypropylene or polyethylene, etc.

Electrolyte: The sodium salt dissolved in a solvent. ٠

Working principle diagram

Na+ reversibly be intercalated and de- interca in the positive and negative electrodes During charging, Na+ is removed from the positive electrode and intercalated in the negative electrode (electron).

During discharge, Na+ is removed from the negative electrode and intercalated in the positive electrode (electron).

CH_4 4% 6% 6% H₂ 19% 25% 32% CO_2 27% 21% 45% CO 34% 45% 7% Others 13% 11% NMC NCA LFP Volumetric compositions of the gas released in a termal event, listed by cell cathode chemistry

LFP Cell: More combustible gas

LFP produces significantly more hydrogen gas than other battery types and...

... gas volume increases linearly with SOC. A fully charged battery will produce significantly more combustible gas.

High-Strength Ceramic Separator Improves Battery Safety

Ceramic separators in lithium batteries usually use polypropylene (PP), polyethylene (PE), or multilayer composite separator as substrate. The surface of the separators is coated with a layer of Al₂O₃, SiO₂, Mg(OH)₂, or other inorganic ceramic particles with good heat resistance, which is tightly bonded with the substrate after special processes to improve heat resistance, heat shrinkage resistance, and puncture strength of the separators, and further improve battery safety.

- Improves the thermal stability of the separator to prevent large-scale contact between the positive and negative electrodes caused by separator shrinkage and prevent safety issues such as fire and explosion.
- ✓ Improves the puncture resistance capability to prevent short circuits caused by lithium dendrite formed after long-term cycles, reducing the risk of thermal runaway caused by internal short circuits.
- ✓ Neutralizes a small amount of hydrofluoric acid in the electrolyte to prevent volume swelling of a battery and ensure the charge, discharge, and cycle efficiency of lithium batteries.
- ✓ The porosity of the ceramic coating is greater than that of the separator, which enhances the liquid retention and infiltration of the separator and extends the cycle life of lithium batteries.

Separator	PE16	PE12 + 4 µm ceramic separator
Separator thickness (µm)	16	16
Melting point (°C)	138	147
Separator puncture temperature	147	154
Puncture strength	320	548

- $\checkmark~$ The P12 separator has a 4 μm ceramic coating. The melting point is 9°C higher than that without the coating, and the puncture strength is high.
- ✓ When all separators have the same thickness, the performance indicators of the ones with ceramic coating are better.

Figure 1 Comparison of the sizes of the pores on the damaged separator where an internal short circuit occurs at the 50% SOC

* Data reference: The Effect of Battery Separator Properties on Thermal Ramp, Overcharge and Short Circuiting of Rechargeable Li-Ion Batteries

Cell level non-diffusion using high temperature insulation & heat resistant mater

PACK-level thermal propagation protection involves placing suitable high-temperature insulation and thermal insulation materials between battery cells to prevent thermal runaway in one cell from affecting adjacent cells, which could lead to a thermal runaway chain reaction.

Positive-pressure oxygen blocking +

directional smoke exhaust

Positive-pressure airtightness and professional pressure relief valve

Heat insulation between cells

Ultra high temperature thermal insulation material

High crosslinked insulating

Resisting electrolyte corrosion for 1000+ hours

ignition" method, prevent the system from catching fire or exploding.

Proactive shutdown and passive isolation, implement comprehensive electrical protection for the ESS

90

The dual-stage architecture ensures safe operation and constant active pow<mark>er outputed</mark> during HVRT

Traditional Central/String Solution: PCS rated AC voltage of 690 V

Structural Safety: Isolation of Different Compartments in the ESS Ensures High in Reliability

Isolation design ensures high system safety

Separate the battery cabin, Liquid-cooling cabin and control unit cabin to ensure operation of the monitoring and fire suppression systems.

Structural safety, high protection and high reliability

The entire system meets the YD5083 standard (intensity 9) earthquake simulation tests

System protection degree IP55 Pack protection degree IP65

The anti-corrosion level of the container meets C5. Neutral salt spray test duration reaches 720 hours.

Explosion Venting and water fire extinguishing test to ensure safety and effective fire extinguishing **Container-level safety** System-level safety **Explosion Venting Tests** water fire extinguishing test Water Fire Test Layout ✓ Explosion-discharge • 烟道方向摄像头 课爆窗打开 window opened ✓ The chassis 34 deformation within / 淮防管道 3.8 \$5,40001 the design range 胡保车 2 外部正前方损害头。 ▶ 目标位置 ✓ After the battery Explosion test simulation heat runs out of control, ignition and explosion do not cause shell disassembly and no System real water fire test (video acceleration 50 times) matters fly out. 21:44:06 21:38:05 21:32:59 Fire extinguished Start spraying water light a fire successfully Real Explosion Test of the System **HUAWEI** 93 Huawei Confidential

Extreme Ignition Test of Huawei's Smart String & Grid Forming ESS -25年02月09日 星期日 19:11:16 2025年02月09日 重期日 19:41:21 16:11 17:45~18:05 Start Triggering 12 Cells into Thermal Runway, No Fire or No Fire or Explosion after **Triggering Another 4 Cells** 5&6 Times Ignition Attempts **Explosion after 4 Times Ignition Attempts** into Thermal Runway 1.5 hours 3 hours 3.5 hours 0 hour Start Burning Continuous Thermal Runway Site Cleaning End The container structure is complete 13 hours 7 hours 6.3 hours and can be hoisted 5年02月10日 星期一 05:05:19 5年02月09日 星期日 22:31:15 👐 HUAWEI 95 Huawei Confidential

Huawei's Smart String & Grid Forming ESS Triumphs in Extreme Ignition Test

Conclusion of Test

The success of this test underscores Huawei Digital Power's major breakthrough in system safety, delivering comprehensive protection from the battery cell level to across the entire system. Through architectural innovation, the company has enhanced the safety

protection mechanism of the ESS from the container level (industry standard) to the pack level, effectively preventing thermal runaway spread.

Highlights

- 1. Real-World Verification with 100% Mass-Produced Products
- 2. Triggering 12 Cells into Thermal Runway Causes No Fire or Explosion after Multiple Ignition Attempts
- 3. Ultimate Fire Resistance Capability Prevents Propagation under Maximum Oxygen Supply Combustion Scenario
- 4. Slow Fault Progression Provides Critical Time for Early Intervention to Avoid Serious Accidents

Thank you

